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SUMMARY 

A grid generation method is proposed for an arbitrary two-dimensional domain. The method, based on the 
Delaunay triangulation, is modified so that it can be used as a grid generator for an arbitrary two- 
dimensional area with complex boundary geometry. Input data for the method are the co-ordinates of all 
nodes and the ordering of nodes on each boundary. Its efficiency is examined through a number of actual 
problems, and a numerical experiment clarifies that the grid generation requires a CPU time which is 
proportional to the number of nodes. 
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1. INTRODUCTION 

A numerical approach to 2D flow problems requires a grid generation method with two 
functions: the first is the automatic generation of boundaries such as coastlines, islands and 
breakwaters, while the second is the subdivision of the domain with complex boundary geometry 
into elements. 

The Delaunay triangulation can be an effective grid generator, but the method necessarily 
generates triangles not only inside the domain but also outside it. At the same time it may often 
fail to generate exact boundaries. These failures are originally caused by the Delaunay triangula- 
tion itself, since the method merely subdivides the convex domain occupied by the nodes into 
triangles which satisfy a geometrical condition.' - 4  Thus, the method must be modified so that it 
can truly generate the boundary of an arbitrary 2D domain and generate triangles only inside the 
domain. Weatherill proposed a method to construct the boundary configuration using the 
geometry of nodes,' while Baker proposed a weakened Delaunay criterion so as not to break the 
boundary configuration.6 

The purpose of this paper is to modify the Delaunay triangulation proposed by Sloan4 so that 
his algorithm can be applied not only to convex but also to arbitrary 2D domains. For this 
purpose we first consider how to recognize the boundary of an arbitrary 2D domain using nodes 
and also how to introduce it into the Delaunay triangulation. We then propose a new grid 
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generation method which is applicable to an arbitrary 2D domain with complex boundary 
geometry. The efficiency of the proposed method is surveyed through a number of test problems. 

2. DELAUNAY TRIANGULATION 

Two-dimensional Delaunay triangulation is a result of the geometry and the method uniquely 
decides a set of triangles for an arbitrary set of nodes in a plane. When the Delaunay triangulation 
is complete, no node may lie inside the circumcircle of any triangle. The geometry of the 
surrounding configuration of generated triangles is The geometrical characteristic of 
triangles generated by the Delaunay triangulation is appropriate for their use as elements for 
finite element analysis. 

In order to apply the Delaunay triangulation as an actual grid generator for the finite element 
method (FEM), the method must be improved to be fast enough and also to be applicable to 
non-convex domains, since actual 2D domains generally show very complex boundary geomet- 
ries and include several thousands of nodes. The triangulation method for 2D domains proposed 
by Sloan achieves a fast Delaunay triangulation by introducing the following items:4 

(1) a supertriangle 
(2) a bin-sorting technique 
(3) a fast algorithm for searching a triangle 
(4) a swapping a l g ~ r i t h m . ~  

Item (1) is for simplification of the triangulation, item (2) is introduced for ordering the nodes to 
be set in the domain, and the ordering can save CPU time via item (3). The last item can accelerate 
the process of Delaunay triangulation, since the Delaunay triangles are obtained only by the 
comparison of two diagonals of a rectangle. 

Sloan’s algorithm generates triangles inside a convex polygon which includes all nodes 
prepared beforehand. Then the method can be used as a grid generator for an arbitrary convex 
2D domain but not effectively for an arbitrary 2D domain. Our aim is to improve his method so 
that it can be applied as a grid generator for an arbitrary 2D domain. 

3. GENERATION OF BOUNDARIES 

3.1. Recognition of boundaries 

Assume a 2D domain which is defined by a number of boundaries. Some of them define the 
exterior boundary, the others the interior boundary. Each of these boundaries can be expressed as 
a polygon if the nodes on the boundary are connected by lines. The Delaunay triangulation can 
be applied for these nodes on boundaries and generates triangles using these nodes, but the 
method may fail to generate exact edges, which should be located on the boundaries. That is, 
some edges of generated triangles are located such that they cross real boundaries, since the 
generation of all edges is determined by the co-ordinates of nodes. Thus our aim is to modify the 
Delaunay triangulation so that the method can truly generate all edges forming the boundaries. 

The generation of triangles can be controlled by considering the location of nodes, since the 
Delaunay triangulation generates triangles according to the co-ordinates of nodes. Then it is 
possible to generate all edges located on boundaries by use of the Delaunay triangulation, but for 
this purpose all nodes on the boundaries must be carefully prepared in the domain. 

The above consideration clarifies that the co-ordinates of nodes are insufficient for the 
generation of boundaries. We first consider how to recognize a boundary using nodes. This 
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consideration is then introduced into the proposal of the boundary generation method in 
Section 3.2. 

Assume that n nodes form a boundary. Then the boundary is expressed as a set of n line 
segments and each line segment is expressed as a pair of nodes. For simplicity we assume that 
nodes forming the boundary are ordered along one direction, i.e. clockwise or counterclockwise. 
We assume also that three nodes forming each triangle are ordered counterclockwise after the 
Delaunay triangulation, since this ordering is generally used for the description of finite elements. 
Then we can easily examine whether the boundary is exactly generated after the application of the 
Delaunay triangulation, because all line segments expressing the boundaries must be included 
among the edges of the generated triangles. The above discussion clarifies that the ordering of 
nodes on a boundary can provide effective information to recognize the boundary and that this 
additional information can be accepted by the Delaunay triangulation. 

3.2. Generation of boundaries 

In Section 3.1 we proposed additional information on nodes which is necessary for the 
recognition of a boundary. Now we consider the generation of a boundary using the Delaunay 
triangulation. 

Let II be the number of nodes located on a boundary. For simplicity we assume that these nodes 
are ordered clockwise from 1 to n on the boundary. Assume that the Delaunay triangulation has 
already been applied for nodes 1 to i ( < n) of the boundary and that all line segments showing the 
boundary from 1 to i have been generated. 

Now we place the ( i+  1)th node in the plane. Then the procedure of Delaunay triangulation 
searches the triangle that includes the new node.4 In the case where one node of the triangle is 
node ‘ i ’ ,  the triangle is divided into three smaller triangles using the ( i+  1)th node and a new 
boundary segment connecting i and i+  1 is necessarily generated. However, in the case where the 
triangle is not formed using node ‘i’, the line segment connecting i and i+  1 cannot be generated. 
In this case we have to modify some of the triangles so that the boundary segment connecting 
i and i+  1 is newly generated. 

( e )  

Figure I. Generation of a boundary 
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The procedure of this modification is shown in Figure 1. First we divide the triangle including 
the (i + 1)th node into three smaller triangles as shown in Figure l(b). Successively we search all 
triangles located between the two triangles which are formed by ‘i’ and ‘ i+  1’ respectively and we 
obtain a polygon by assembling these triangles as shown in Figure l(c). The addition of a new 
edge connecting the two nodes ‘i’ and ‘ i+  1’ subdivides the polygon into two parts as shown in 
Figure l(d). The final stage is the subdivision of these two parts into triangles, the triangulation 
being done so as not to break the boundary segment newly generated between ‘i’ and ‘ i+  1’ (see 
Figure l(e)). 

4. DELAUNAY TRIANGULATION INSIDE A 2D DOMAIN 

4.1. Delaunay triungulation for nodes inside a domain 

In Section 3.2 we showed how to generate the boundaries of a 2D domain. The nodes used in 
Section 3.2 are those which form the supertriangle and boundaries. Thus the process of generating 
all boundaries necessarily generates triangles inside the supertriangle. Then we are generally 
required to subdivide the triangles located inside the exterior boundary into smaller triangles 
using additional nodes inside the domain. 

The grid generation for these nodes is also based on the Delaunay triangulation by S l ~ a n , ~  but 
the following modification must be added to the method: the swapping algorithm for the 
exchange of the diagonal is used only when the original diagonal is not the boundary segment. An 
example is presented in Figure 2. The line connecting nodes a, b, c, and d in  Figure 2 expresses the 
boundary segments. Assume that a new node denoted by x is set in the domain and that the 
circumcircle of the triangle (cbx) includes node a. If the swapping algorithm is used, the diagonal 
(bc) must be exchanged by another diagonal (ax). However, an exchange of diagonals should not 
be done in this case, since the diagonal (bc) is part of the boundary. In other cases the swapping 
algorithm is applied in order to improve the configuration of triangles. 

4.2. Recogvition of triangles inside a domain 

After the triangulation for nodes on boundaries and additional nodes inside the domain, the 
supertriangle is divided into smaller triangles. This indicates that unnecessary triangles are 
generated outside the exterior boundaries and also inside the interior boundaries. These triangles 
must be removed. 

Triangles located inside the supertriangle are classified into six categories: 

(1) triangles having at least one node forming the supertriangle 
(2) triangles formed only by nodes on exterior boundaries 

Figure 2. Triangulation of nodes on a boundary 
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(3) triangles having at least one node located inside the domain 
(4) triangles formed by nodes on both exterior and interior boundaries 
(5) triangles formed only by nodes on several interior boundaries 
(6) triangles formed only by nodes on interior boundaries. 

As is obvious from Figure 3, triangles of category (1) are located outside the domain. On the 
other hand, triangles of categories (3), (4) and (5) are located inside the domain. Triangles of 
categories (2) and (6) may be located outside or inside the domain. Thus we have to establish 
a judgement as to  whether triangles are located inside the domain or not. 

We assume that nodes on a boundary are ordered e.g. clockwise from a node arbitrarily 
selected among them. Figure 4 is an illustration of two triangles located outside and inside the 
domain respectively. The thick lines in Figure 4 denote boundary segments. We find that the 
ordering of two nodes on a boundary segment appears reversely for these two triangles if the three 
nodes forming a triangle are stored counterclockwise. Thus we can examine the location of these 
triangles from the ordering of nodes forming the triangles. 

Figure 3. Classification of triangles 
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Figure 4. Triangles inside and outside a domain 

4.3. Improvement of the geometry of generated triangles 

The Delaunay method generates triangles for nodes which are prepared by the user and the 
geometry of generated triangles is wholly determined by the co-ordinates of nodes. It may happen 
that their geometry must be improved after the Delaunay triangulation. 

One effective method for this purpose is the introduction of the Laplacian method, which 
relocates the co-ordinates of any node to the centre of gravity of all triangles related to that node. 
Repetition of this procedure can improve the geometry of triangles. However, this relocation 
should be applied only for nodes inside the domain, since nodes on boundaries must be fixed at 
their original positions to express the geometry of the domain. In the case where there are 
a number of fixed nodes inside the domain, they are also excluded from this relocation. 

5. ALGORITHM O F  MODIFIED DELAUNAY TRIANGULATION 

The modification of the Delaunay triangulation proposed by Sloan has been explained in 
Sections 3 and 4. The procedure of the modified Delaunay triangulation is divided into two 
processes: coarse triangulation for nodes on boundaries and fine triangulation for nodes located 
inside the domain. The first process is the generation of all line segments on the boundaries and at 
the same time the generation of rough triangles not only inside but also outside the domain. The 
second process subdivides the rough triangles located inside the domain into small triangles. 

The grid generator is effective for an arbitrary 2D domain which consists of a number of 
subdomains with interior boundaries. Each subdomain is defined by an exterior boundary and 
therefore some of the nodes on the exterior boundary are used for defining several exterior 
boundaries. 

Before using this grid generation method, the user is required to prepare the following data: 

(1) number of exterior and interior boundaries 
(2) number of nodes on each boundary 
(3) nodes on each exterior boundary (ordered clockwise) 
(4) co-ordinates of all nodes. 

The grid generation procedure consists of the following steps. Note that MTJ in the following 
steps is the element-node relation obtained by the grid generation and NO’) is the number of 
nodes set on the jth boundary. 
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Coarse grid generation 
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Step 1. 
Step 2. 
Step 3. 
Step 4. 

Step 5. 
Step 6. 
Step 7. 

Step 8. 
Step 9. 

Step 10. 

Step 11. 

Step 12. 

Step 13. 

Step 14. 
Step 15. 

Input all data ( j =  1). 
Place the supertriangle. 
Set i =  1. 
Place the ith node and find the triangle including it. Divide the triangle into three 
small triangles and store them in STACK. 
If the triangle includes the (i- 1)th node, then go to Step 6. Otherwise, go to Step 11. 
Pick out the last entry of STACK. 
Find an edge which is not a boundary segment and search another triangle adjacent 
to the edge. 
Compare two diagonals of the rectangle formed by these two triangles. 
If the old diagonal is longer than the other, form new triangles by exchanging the 
diagonals. Store them in STACK and go to Step 6. If the old diagonal is shorter than 
the other, store these two triangles in MTJ and go to Step 10. 
If STACK is not empty, go to Step 6. Otherwise, replace i by i + 1. If i + 1 > NO'), go to 
Step 14. Otherwise, go to Step 4. 
Find all triangles located between the newly generated triangles which include the ith 
node and the triangle includng the (i- 1) th node. 
Remove all common edges for these triangles and form a polygon. Divide it into two 
polygons by adding an edge connecting i -  1 and i. 
Divide these two polygons into triangles and store them in STACK. Apply Steps 
6-10 and modify the triangles. 
Apply Steps 11-13 by replacing i-1 in these steps by 1 and go to Step 16. 
Replace j by j +  1 and go to Step 2. 

Fine grid generation 

Step 16. Apply Steps 4-10 for all nodes which are prepared in the domain. Step 5 must be 
removed. 

Removal of unnecessary triangles 

Step 17. 

If necessary, the following step is applied after Step 17. 

Remove all triangles which are located outside the domain. 

Improvement of geometry of triangles 

Step 18. Apply the Laplacian method for improvement of the shape of generated triangles. 

6. TEST PROBLEMS AND RESULTS 

Thirteen test problems have been prepared for examination of the grid generation method 
proposed in this paper. The purposes of these tests are (1) to examine whether the method can 
generate the boundaries and (2) to survey the execution time necessary for generating a grid. The 
test of the grid generation method was done using a CADMUS workstation at Institut fur 
Stromungsmechanik und Elektron. Rechnen im Bauwesen, Universitat Hannover. 

Table I summarizes the characteristics of the test problems and the results of the tests. All these 
problems are selected from maps and charts and the co-ordinates of nodes are prepared using the 
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Table I. Test problems and CPU times 

Test No. of No. of Time 
no. nodes boundaries (4 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

279 
653 

1755 
5141 
283 1 

788 
158 
172 
205 
288 
141 
114 
416 

4 
4 
4 
1 

13 
13 
8 
8 
8 
5 
5 

10 
10 

6.4 
11.7 
28.7 
80.5 
48.9 
15.4 
5.6 
6.4 
6.8 
6.0 
4.0 
3.7 

11.1 

I / generation rnodul B 

3001 150 

number of nodl 
I x  

s o - -  _ _  -. es 
> 

300 700 1400 2100 2800 

Figure 5. CPU time for proposed grid generation 

digitizer. The number of nodes for these problems is between 114 and 5141 and the number of 
boundaries is between one and 13. The execution time required for their grid generation is also 
given in the table. The comparison of the execution time for these tests is summarized in Figure 5, 
where generation modules A and B indicate the result by the method which has been used 
previously in the Institut and the new one proposed in this paper respectively. The figure shows 
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Figure qa). Grid of Test 5 
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Figure qb). Grid of Test 6 
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that for our method the CPU time increases almost linearly with the increase in the number of 
nodes. 

The four grids in Figures 6(a)-6(d) show the results of Tests 5, 6, 3 and 13 respectively. The 
proposed method was able to generate all boundaries for all cases. Black zones in these figures 
indicate the location of islands. 

The improvement in the geometry of generated elements (i.e. Step 18 in the algorithm in 
Section 5) is not used, since the co-ordinates of all nodes are carefully placed and picked up by the 
digitizer. 

The problems shown in this section have only one exterior boundary, but the method can be 
applied for 2D domains with several exterior boundaries. 

7. CONCLUDING REMARKS 

We have proposed a new grid generation method based on the Delaunay triangulation for 2D 
flow problems. The method is useful for the modelling of an arbitrary 2D domain enclosed by 
multiple boundaries with geometrical complexity. Numerical tests clarified that the method can 
generate boundaries and that the execution time increases almost linearly according to the 
number of nodes. 

The proposed method can be thought as a kind of blocking method,* i.e. the coarse grid 
generation works by subdividing the whole area into a number of simple subareas, while the fine 
grid generation subdivides all subareas into smaller elements. However, the proposed method is 
easy to use and more flexible than the conventional blocking method, since the conventional 
blocking method requires more input data and has a restriction on the number of nodes placed on 
the boundaries. 

In this paper we did not discuss any method to place nodes inside the domain, since all nodes 
not only on the boundaries but also inside the domain were prepared using the digitizer. In the 
case where only the geometry of all boundaries is given, the user must prepare a method to set 
nodes inside the domain. 
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