
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 15, 985-997 (1992)

GRID GENERATION. FOR 2D FLOW PROBLEMS

TAKE0 TANIGUCHI
Engineering Science Department, Faculty of Engineering. Okayama University, Tsushima-naka, Okayama 700, Japan

KLAUS-PETER HOLZ
Institut fur Stromungsmechanik und Elektron. Rechnen im Bauwesen. Universitat Hannover. Hannover I , Germany

AND

CHIKASHI OHTA
Ohbayashi-gumi Co. Ltd.. Chuoh-ku, Osaka 540, Japan

SUMMARY

A grid generation method is proposed for an arbitrary two-dimensional domain. The method, based on the
Delaunay triangulation, is modified so that it can be used as a grid generator for an arbitrary two-
dimensional area with complex boundary geometry. Input data for the method are the co-ordinates of all
nodes and the ordering of nodes on each boundary. Its efficiency is examined through a number of actual
problems, and a numerical experiment clarifies that the grid generation requires a CPU time which is
proportional to the number of nodes.

KEY WORDS Delaunay triangulation Grid generation 2D domain Triangular mesh Coastal engineering FEM

1. INTRODUCTION

A numerical approach to 2D flow problems requires a grid generation method with two
functions: the first is the automatic generation of boundaries such as coastlines, islands and
breakwaters, while the second is the subdivision of the domain with complex boundary geometry
into elements.

The Delaunay triangulation can be an effective grid generator, but the method necessarily
generates triangles not only inside the domain but also outside it. At the same time it may often
fail to generate exact boundaries. These failures are originally caused by the Delaunay triangula-
tion itself, since the method merely subdivides the convex domain occupied by the nodes into
triangles which satisfy a geometrical condition.' - 4 Thus, the method must be modified so that it
can truly generate the boundary of an arbitrary 2D domain and generate triangles only inside the
domain. Weatherill proposed a method to construct the boundary configuration using the
geometry of nodes,' while Baker proposed a weakened Delaunay criterion so as not to break the
boundary configuration.6

The purpose of this paper is to modify the Delaunay triangulation proposed by Sloan4 so that
his algorithm can be applied not only to convex but also to arbitrary 2D domains. For this
purpose we first consider how to recognize the boundary of an arbitrary 2D domain using nodes
and also how to introduce it into the Delaunay triangulation. We then propose a new grid

027 1-209 1/92/2 1098 5- 1 3 $1 1.50
0 1992 by John Wiley & Sons, Ltd.

Received March 1992

986 T. TANIGUCHI, K.-P. HOLZ AND C. OHTA

generation method which is applicable to an arbitrary 2D domain with complex boundary
geometry. The efficiency of the proposed method is surveyed through a number of test problems.

2. DELAUNAY TRIANGULATION

Two-dimensional Delaunay triangulation is a result of the geometry and the method uniquely
decides a set of triangles for an arbitrary set of nodes in a plane. When the Delaunay triangulation
is complete, no node may lie inside the circumcircle of any triangle. The geometry of the
surrounding configuration of generated triangles is The geometrical characteristic of
triangles generated by the Delaunay triangulation is appropriate for their use as elements for
finite element analysis.

In order to apply the Delaunay triangulation as an actual grid generator for the finite element
method (FEM), the method must be improved to be fast enough and also to be applicable to
non-convex domains, since actual 2D domains generally show very complex boundary geomet-
ries and include several thousands of nodes. The triangulation method for 2D domains proposed
by Sloan achieves a fast Delaunay triangulation by introducing the following items:4

(1) a supertriangle
(2) a bin-sorting technique
(3) a fast algorithm for searching a triangle
(4) a swapping a l g ~ r i t h m . ~

Item (1) is for simplification of the triangulation, item (2) is introduced for ordering the nodes to
be set in the domain, and the ordering can save CPU time via item (3). The last item can accelerate
the process of Delaunay triangulation, since the Delaunay triangles are obtained only by the
comparison of two diagonals of a rectangle.

Sloan’s algorithm generates triangles inside a convex polygon which includes all nodes
prepared beforehand. Then the method can be used as a grid generator for an arbitrary convex
2D domain but not effectively for an arbitrary 2D domain. Our aim is to improve his method so
that it can be applied as a grid generator for an arbitrary 2D domain.

3. GENERATION OF BOUNDARIES

3.1. Recognition of boundaries

Assume a 2D domain which is defined by a number of boundaries. Some of them define the
exterior boundary, the others the interior boundary. Each of these boundaries can be expressed as
a polygon if the nodes on the boundary are connected by lines. The Delaunay triangulation can
be applied for these nodes on boundaries and generates triangles using these nodes, but the
method may fail to generate exact edges, which should be located on the boundaries. That is,
some edges of generated triangles are located such that they cross real boundaries, since the
generation of all edges is determined by the co-ordinates of nodes. Thus our aim is to modify the
Delaunay triangulation so that the method can truly generate all edges forming the boundaries.

The generation of triangles can be controlled by considering the location of nodes, since the
Delaunay triangulation generates triangles according to the co-ordinates of nodes. Then it is
possible to generate all edges located on boundaries by use of the Delaunay triangulation, but for
this purpose all nodes on the boundaries must be carefully prepared in the domain.

The above consideration clarifies that the co-ordinates of nodes are insufficient for the
generation of boundaries. We first consider how to recognize a boundary using nodes. This

GRID GENERATION FOR 2D FLOW PROBLEMS 987

consideration is then introduced into the proposal of the boundary generation method in
Section 3.2.

Assume that n nodes form a boundary. Then the boundary is expressed as a set of n line
segments and each line segment is expressed as a pair of nodes. For simplicity we assume that
nodes forming the boundary are ordered along one direction, i.e. clockwise or counterclockwise.
We assume also that three nodes forming each triangle are ordered counterclockwise after the
Delaunay triangulation, since this ordering is generally used for the description of finite elements.
Then we can easily examine whether the boundary is exactly generated after the application of the
Delaunay triangulation, because all line segments expressing the boundaries must be included
among the edges of the generated triangles. The above discussion clarifies that the ordering of
nodes on a boundary can provide effective information to recognize the boundary and that this
additional information can be accepted by the Delaunay triangulation.

3.2. Generation of boundaries

In Section 3.1 we proposed additional information on nodes which is necessary for the
recognition of a boundary. Now we consider the generation of a boundary using the Delaunay
triangulation.

Let II be the number of nodes located on a boundary. For simplicity we assume that these nodes
are ordered clockwise from 1 to n on the boundary. Assume that the Delaunay triangulation has
already been applied for nodes 1 to i (< n) of the boundary and that all line segments showing the
boundary from 1 to i have been generated.

Now we place the (i+ 1)th node in the plane. Then the procedure of Delaunay triangulation
searches the triangle that includes the new node.4 In the case where one node of the triangle is
node ‘ i ’ , the triangle is divided into three smaller triangles using the (i+ 1)th node and a new
boundary segment connecting i and i+ 1 is necessarily generated. However, in the case where the
triangle is not formed using node ‘i’, the line segment connecting i and i+ 1 cannot be generated.
In this case we have to modify some of the triangles so that the boundary segment connecting
i and i+ 1 is newly generated.

(e)

Figure I. Generation of a boundary

988 T. TANIGUCHI, K.-P. HOLZ AND C. OHTA

The procedure of this modification is shown in Figure 1. First we divide the triangle including
the (i + 1)th node into three smaller triangles as shown in Figure l(b). Successively we search all
triangles located between the two triangles which are formed by ‘i’ and ‘ i+ 1’ respectively and we
obtain a polygon by assembling these triangles as shown in Figure l(c). The addition of a new
edge connecting the two nodes ‘i’ and ‘ i+ 1’ subdivides the polygon into two parts as shown in
Figure l(d). The final stage is the subdivision of these two parts into triangles, the triangulation
being done so as not to break the boundary segment newly generated between ‘i’ and ‘ i+ 1’ (see
Figure l(e)).

4. DELAUNAY TRIANGULATION INSIDE A 2D DOMAIN

4.1. Delaunay triungulation for nodes inside a domain

In Section 3.2 we showed how to generate the boundaries of a 2D domain. The nodes used in
Section 3.2 are those which form the supertriangle and boundaries. Thus the process of generating
all boundaries necessarily generates triangles inside the supertriangle. Then we are generally
required to subdivide the triangles located inside the exterior boundary into smaller triangles
using additional nodes inside the domain.

The grid generation for these nodes is also based on the Delaunay triangulation by S l ~ a n , ~ but
the following modification must be added to the method: the swapping algorithm for the
exchange of the diagonal is used only when the original diagonal is not the boundary segment. An
example is presented in Figure 2. The line connecting nodes a, b, c, and d in Figure 2 expresses the
boundary segments. Assume that a new node denoted by x is set in the domain and that the
circumcircle of the triangle (cbx) includes node a. If the swapping algorithm is used, the diagonal
(bc) must be exchanged by another diagonal (ax). However, an exchange of diagonals should not
be done in this case, since the diagonal (bc) is part of the boundary. In other cases the swapping
algorithm is applied in order to improve the configuration of triangles.

4.2. Recogvition of triangles inside a domain

After the triangulation for nodes on boundaries and additional nodes inside the domain, the
supertriangle is divided into smaller triangles. This indicates that unnecessary triangles are
generated outside the exterior boundaries and also inside the interior boundaries. These triangles
must be removed.

Triangles located inside the supertriangle are classified into six categories:

(1) triangles having at least one node forming the supertriangle
(2) triangles formed only by nodes on exterior boundaries

Figure 2. Triangulation of nodes on a boundary

GRID GENERATION FOR 2D FLOW PROBLEMS 989

(3) triangles having at least one node located inside the domain
(4) triangles formed by nodes on both exterior and interior boundaries
(5) triangles formed only by nodes on several interior boundaries
(6) triangles formed only by nodes on interior boundaries.

As is obvious from Figure 3, triangles of category (1) are located outside the domain. On the
other hand, triangles of categories (3), (4) and (5) are located inside the domain. Triangles of
categories (2) and (6) may be located outside or inside the domain. Thus we have to establish
a judgement as to whether triangles are located inside the domain or not.

We assume that nodes on a boundary are ordered e.g. clockwise from a node arbitrarily
selected among them. Figure 4 is an illustration of two triangles located outside and inside the
domain respectively. The thick lines in Figure 4 denote boundary segments. We find that the
ordering of two nodes on a boundary segment appears reversely for these two triangles if the three
nodes forming a triangle are stored counterclockwise. Thus we can examine the location of these
triangles from the ordering of nodes forming the triangles.

Figure 3. Classification of triangles

990 T. TANIGUCHI, K.-P. HOLZ AND C. OHTA

Figure 4. Triangles inside and outside a domain

4.3. Improvement of the geometry of generated triangles

The Delaunay method generates triangles for nodes which are prepared by the user and the
geometry of generated triangles is wholly determined by the co-ordinates of nodes. It may happen
that their geometry must be improved after the Delaunay triangulation.

One effective method for this purpose is the introduction of the Laplacian method, which
relocates the co-ordinates of any node to the centre of gravity of all triangles related to that node.
Repetition of this procedure can improve the geometry of triangles. However, this relocation
should be applied only for nodes inside the domain, since nodes on boundaries must be fixed at
their original positions to express the geometry of the domain. In the case where there are
a number of fixed nodes inside the domain, they are also excluded from this relocation.

5. ALGORITHM O F MODIFIED DELAUNAY TRIANGULATION

The modification of the Delaunay triangulation proposed by Sloan has been explained in
Sections 3 and 4. The procedure of the modified Delaunay triangulation is divided into two
processes: coarse triangulation for nodes on boundaries and fine triangulation for nodes located
inside the domain. The first process is the generation of all line segments on the boundaries and at
the same time the generation of rough triangles not only inside but also outside the domain. The
second process subdivides the rough triangles located inside the domain into small triangles.

The grid generator is effective for an arbitrary 2D domain which consists of a number of
subdomains with interior boundaries. Each subdomain is defined by an exterior boundary and
therefore some of the nodes on the exterior boundary are used for defining several exterior
boundaries.

Before using this grid generation method, the user is required to prepare the following data:

(1) number of exterior and interior boundaries
(2) number of nodes on each boundary
(3) nodes on each exterior boundary (ordered clockwise)
(4) co-ordinates of all nodes.

The grid generation procedure consists of the following steps. Note that MTJ in the following
steps is the element-node relation obtained by the grid generation and NO’) is the number of
nodes set on the jth boundary.

GRID GENERATION FOR 2D FLOW PROBLEMS

Coarse grid generation

99 1

Step 1.
Step 2.
Step 3.
Step 4.

Step 5.
Step 6.
Step 7.

Step 8.
Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.
Step 15.

Input all data (j = 1).
Place the supertriangle.
Set i = 1.
Place the ith node and find the triangle including it. Divide the triangle into three
small triangles and store them in STACK.
If the triangle includes the (i- 1)th node, then go to Step 6. Otherwise, go to Step 11.
Pick out the last entry of STACK.
Find an edge which is not a boundary segment and search another triangle adjacent
to the edge.
Compare two diagonals of the rectangle formed by these two triangles.
If the old diagonal is longer than the other, form new triangles by exchanging the
diagonals. Store them in STACK and go to Step 6. If the old diagonal is shorter than
the other, store these two triangles in MTJ and go to Step 10.
If STACK is not empty, go to Step 6. Otherwise, replace i by i + 1. If i + 1 > NO'), go to
Step 14. Otherwise, go to Step 4.
Find all triangles located between the newly generated triangles which include the ith
node and the triangle includng the (i- 1) th node.
Remove all common edges for these triangles and form a polygon. Divide it into two
polygons by adding an edge connecting i - 1 and i.
Divide these two polygons into triangles and store them in STACK. Apply Steps
6-10 and modify the triangles.
Apply Steps 11-13 by replacing i-1 in these steps by 1 and go to Step 16.
Replace j by j + 1 and go to Step 2.

Fine grid generation

Step 16. Apply Steps 4-10 for all nodes which are prepared in the domain. Step 5 must be
removed.

Removal of unnecessary triangles

Step 17.

If necessary, the following step is applied after Step 17.

Remove all triangles which are located outside the domain.

Improvement of geometry of triangles

Step 18. Apply the Laplacian method for improvement of the shape of generated triangles.

6. TEST PROBLEMS AND RESULTS

Thirteen test problems have been prepared for examination of the grid generation method
proposed in this paper. The purposes of these tests are (1) to examine whether the method can
generate the boundaries and (2) to survey the execution time necessary for generating a grid. The
test of the grid generation method was done using a CADMUS workstation at Institut fur
Stromungsmechanik und Elektron. Rechnen im Bauwesen, Universitat Hannover.

Table I summarizes the characteristics of the test problems and the results of the tests. All these
problems are selected from maps and charts and the co-ordinates of nodes are prepared using the

992 T. TANIGUCHI, K.-P. HOLZ AND C. OHTA

Table I. Test problems and CPU times

Test No. of No. of Time
no. nodes boundaries (4

1
2
3
4
5
6
7
8
9

10
11
12
13

279
653

1755
5141
283 1

788
158
172
205
288
141
114
416

4
4
4
1

13
13
8
8
8
5
5

10
10

6.4
11.7
28.7
80.5
48.9
15.4
5.6
6.4
6.8
6.0
4.0
3.7

11.1

I / generation rnodul B

3001 150

number of nodl
I x

s o - - _ _ -. es
>

300 700 1400 2100 2800

Figure 5. CPU time for proposed grid generation

digitizer. The number of nodes for these problems is between 114 and 5141 and the number of
boundaries is between one and 13. The execution time required for their grid generation is also
given in the table. The comparison of the execution time for these tests is summarized in Figure 5,
where generation modules A and B indicate the result by the method which has been used
previously in the Institut and the new one proposed in this paper respectively. The figure shows

GRID GENERATION FOR 2D FLOW PROBLEMS 993

shot low n=2f331 ele=5156 1 = 4 8 . 9 2 s

Figure qa). Grid of Test 5

994 T. TANIGUCHI, K.-P. HOLZ AND C. OHTA

2 5 . 0 0 5 0 . 0 0 KM
4 sho l low I *] n.788 ele=lbOb 1=15.4sec

Figure qb). Grid of Test 6

GRID GENERATION FOR 2D FLOW PROBLEMS 995

m m
D

>
?

996 T. TANIGUCHI. K.-P. HOLZ AND C. OHTA

ln m

GRID GENERATION FOR 2D FLOW PROBLEMS 997

that for our method the CPU time increases almost linearly with the increase in the number of
nodes.

The four grids in Figures 6(a)-6(d) show the results of Tests 5, 6, 3 and 13 respectively. The
proposed method was able to generate all boundaries for all cases. Black zones in these figures
indicate the location of islands.

The improvement in the geometry of generated elements (i.e. Step 18 in the algorithm in
Section 5) is not used, since the co-ordinates of all nodes are carefully placed and picked up by the
digitizer.

The problems shown in this section have only one exterior boundary, but the method can be
applied for 2D domains with several exterior boundaries.

7. CONCLUDING REMARKS

We have proposed a new grid generation method based on the Delaunay triangulation for 2D
flow problems. The method is useful for the modelling of an arbitrary 2D domain enclosed by
multiple boundaries with geometrical complexity. Numerical tests clarified that the method can
generate boundaries and that the execution time increases almost linearly according to the
number of nodes.

The proposed method can be thought as a kind of blocking method,* i.e. the coarse grid
generation works by subdividing the whole area into a number of simple subareas, while the fine
grid generation subdivides all subareas into smaller elements. However, the proposed method is
easy to use and more flexible than the conventional blocking method, since the conventional
blocking method requires more input data and has a restriction on the number of nodes placed on
the boundaries.

In this paper we did not discuss any method to place nodes inside the domain, since all nodes
not only on the boundaries but also inside the domain were prepared using the digitizer. In the
case where only the geometry of all boundaries is given, the user must prepare a method to set
nodes inside the domain.

ACKNOWLEDGEMENTS

The authors would like to thank Dip.-Ing. H. Nothel and Dip.-Ing. A. Pluss of Universitat
Hannover for discussion of the grid generator proposed in this paper.

REFERENCES

1. A. Bowyer, ‘Computing Dirichlet tesselation’, Comput. J . , 24, 162-166 (1981).
2. D. F. Watson, ‘Computing n-dimensional Delaunay tesselation with application to Voronoi polytopes’, Comput. J . , 24,

3. S. W. Sloan and G . T. Houlsby, ‘An implementation of Watson’s algorithm for computing 2-dimensional Delaunay

4. S. W. Sloan, ‘A fast algorithm for constructing Delaunay triangulation in the plane’, Adu. Eng. Sofw. 9, 34-55 (1987).
5. N . P. Weathrill, ’A method for generating irregular computational grids in multiply connected planar domains’, Int. j.

6 . T. J . Baker, ‘Tetrahedral mesh generation for the calculation of flows around complex configurations’, Manuscript for

7. C. L. Lawson, in J. Rice (ed.), Mathematical Software III, Academic, New York, 1977, pp. 161-194.
8. T. Taniguchi, ‘An interactive automatic mesh generator for the microcomputer’, Comput. Struct., 30, 715-722 (1988).

167-182 (1981).

triangulations’, Adu. Eng. Softw., 6, 192-197 (1984).

numer. methodsjuids, 8, 181-197 (1988).

Second Nobeyama Workshop on Fluid Dynamics and Supercomputers, 1987.

